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A class of nonlinear wave equations is derived which can be written as the 
vanishing of a covariant exterior derivative. The Painlev6 test is performed and 
the connection with integrability is discussed. 

Nonlinear evolution equations are usually called integrable when one 
of the following properties is fulfilled: (I) the initial value problem can be 
solved exactly with the help of  the inverse scattering transform, (II)  they 
have an infinite number  of  conservation laws, ( I I I )  they have an auto- 
B~icklund transformation or a B~icklund transformation, (IV) besides Lie 
point vector fields, they admit Lie B~icklund vector fields, (V) they describe 
pseudospherical  surfaces, i.e., surfaces of  constant negative Gaussian cur- 
vature, or (VI) they can be written as covariant exterior derivatives of  Lie 
algebra-valued differential forms. It is conjectured that if property I holds, 
then the properties I I -VI  also hold. 

The connection between integrable systems and covariant exterior 
derivatives has been studied by various authors (Crampin et  al., 1977; 
Crampin,  1978; Sasaki, 1979a-c; Nestrenko, 1980, 1981; Madore,  1983; 
Steeb et  al., 1984a). 

In the present paper  we give a class of  nonlinear wave equations in 
one space dimension which can be written as covariant exterior derivatives. 
The connection with other properties of integrable systems mentioned above 
will be described. Moreover,  the Painlev6 property of  this class of  wave 
equations will be studied. 
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The wave equation in one space dimension under consideration is given 
by 

u.~,-u~x = f ( u )  (1) 

where f is a smooth function. Shadwick (1978) showed that equation (1) 
admits B~icklund transformations if the function f satisfies the linear 
ordinary differential equation 

f " + c f = O  (c~R)  (2) 

Equation (1) together with equation (2) includes the Liouville equation and 
the sine Gordon equation. Steeb (1984a) showed that equation (1) admits 
Lie Bficklund vector fields if f satisfies equation (2). Furthermore, it can 
be shown that equation (1) together with equation (2) passes the so-called 
Painlev~ test for partial differential equations (Weiss et al., 1983) when we 
perform a suitable transformation for the dependent variable u. For example, 
for the Liouville equation u , -  u~ = e u we put v = exp(u) (Steeb et al., 
1984b). For a critical discussion of the Painlev6 test we refer to Steeb and 
Louw (1986). 

Let us now introduce the covariant exterior derivative. Let M be a C ~ 
finite-dimensional manifold (dim M = n). Denote by FP(M) the set of all 
C ~ p-differential forms on M for each p = 0, 1 , . . . ,  m. Let L be a finite- 
dimensional Lie algebra. A Lie algebra-valued differential form on M is 
an element of  the tensor product  FP(M)QL.  If T~, i-- 1 , . . . ,  n, is a basis 
for L, then a Lie-algebra valued p-differential form 3~ can be written as 

= ~ y,| T~ (3) 
i = 1  

where yi ~ FP(M). The bracket [ ,  ] of  Lie algebra-valued differential forms 
and/3  is defined as 

[~,/3]:= Y, ~ (yi^/3j)| Tj] (4) 
i = l j = l  

where [ T~, Tj] denotes the commutator of the Lie algebra L. 
The exterior derivative of a Lie algebra-valued differential form is given 

by 

d~,= E (dr,)| (5) 
i = l  

The covariant exterior derivative of a Lie algebra-valued p-form /3 with 



Nonlinear Wave Equations 

respect to a Lie algebra one-form d is defined as 

De,~ := d f l - g [  d, fll 

where 

Consequently, 
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(6) 

The Lie algebra-valued one-form 8 is called the connection. 
To study the wave equation (1) we consider the case where M = R 2 

and L = sl(2, R). Extensions will be given at the end of the paper. In local 
coordinates (x, t) a Lie algebra-valued one-differential-form is given by 

where 

3 

~ =  2 a,| (9) 
i=1 

a~ = a~ dx + A~ dt (10) 

and { T1, 7"2, T3} is a basis of the Lie algebra sl(2, R). A convenient choice 
i s  

0) ~ ;) 

The condition that the covariant derivative vanishes 

D~d =0 

leads to the following system of PDEs of first order: 

-Oal /  Ot + OA1/ Ox + a2A3 - a 3 A  2 = 0 

--Oa2/ Ot + OA2/ Ox + 2(a1A2- a2A1) = 0 

Oa3/Ot+OA3/Ox-2(alA 3 -  a 3 A 1 )  = 0 

The sine Gordon equation 

u .  - u =  + s i n  u = 0 

~) (11) 

(12) 

(13a) 

(13b) 

(13c) 

(14) 

D s ~  = d~ +�89 ~] (8) 

-1  p even 

g = - 1 / 2  p odd 
(7) 
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can be represented as follows: 

a2 = -~ (cos  u + 1), 

a2 = �88 ux + u, - sin u ), 

a3 = -�88 + u, + sin u), 

A 1 = 1(cos tt -- 1) 

A2 = �88 + u, + sin u) 

A 3 = - J ( u x  + u , - s i n  u) 

(15) 

I f  we insert al through A 3 into equat ion (13), then we find that  equat ion 
(13a) is satisfied identically. Equat ions (13b) and (13c) yield the sine- 
G o r d o n  equation. Motivated by this, we find the following extension. 

Theorem. Let 

al = f l ( u ) ,  

a2 = c,ux + c2u, + f3 (u ) ,  

a3 = CsUx + C6Ut +fs (u ) ,  

A,  = f z ( u )  

A 2 = C3U x + C4U t +f4(u)  

A3 = c7ux + CsUt +f6(u)  

(16) 

j'2 = 4 q  f3, J'3 = -16c2f3  (17e) 

f2 = - 4 c , f 3 ,  j~; = 16c~f3 (17f) 

where f i , . . . , f 6  are 
algebra-valued differential form o7 satisfies the condi t ion (12) if 

Cl = c2 = c3 = Ca, c5 = c6 = c7 = c8 (17a) 

f4 = --f3, f6 = - f5  (17b) 

f s =  c f 3 ( c e  {+ l ,  - 1 } )  (17c) 

- c l u t t  + ClUxx + 2f3( - f l  - f 2 )  = 0 (17d) 

and 

Let us now discuss the solutions to equat ion (17). We find at once the 
nonl inear  wave equat ions 

u ,  - u=  = C~ cosh u + C2 sinh u (18) 

u,, - Uxx = C1 sin u + C2 cos u (19) 

(C1,  C 2 ~ )  can be written as the covariant  exterior derivative of  a Lie 
algebra-valued one-form,  where the underlying Lie algebra is sl(2, ~) .  

(i) 

(ii) 

(iii) 

(iv) 

and for c = 1 

(va) f x = - - 4 c ,  f3 ,  

where cl = - c s ;  for  c = - 1  

(vb) ?1 ~- 4 c i f 3 ,  

where Cl = c5. 

smooth  functions and c 1 , . . .  , c 8 c ~. Then the Lie 
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The nonlinear wave equation 

ut, - Uxx = e u - e - 2 u  (20) 

does not belong to the class given above. To include such types of equations, 
we have to extend the Lie algebra. 

Let us now discuss whether or not these equations pass the so-called 
Painlev6 test for partial differential equations. Ward (1984) has introduced 
what is now called the Painlev4 property for partial differential equations. 
The system of partial differential equations is considered in the complex 
domain. Let n be the number of independent variables. Assume that the 
system of partial differential equations has coefficients that are analytic on 
C n. The Painlev4 property is defined as follows: if S is an analytic noncharac- 
teristic complex hypersurface in C", then every solution of the partial 
differential equations that is analytic on C " \ S  is meromorphic on C"o 

To prove whether or not a given partial differential equation has the 
Painlev6 property is very difficult, or even impossible. A weaker form 
(so-called Painlev6 test) of  the Painlev6 property was proposed by Weiss 
et  al. (1983). They looked for solutions of the form 

u = ~ "  ~ ujCI~ (21) 
j = 0  

where dp is an analytic function Whose vanishing defines a noncharacteristic 
hypersurface S. Inserting this expansion into the partial differential equation 
leads to conditions on m and recursion relations for the functions u s. The 
weaker form of the Painlev6 property states that m should be a n  integer, 
that the recursion relation should be consistent, and that the series expansion 
should contain the correct number of arbitrary functions. We say that the 
partial differential equation passes the Painlev6 test. Notice that it may 
happen that more than one branch arises. Moreover, the expansion could 
a p r i o r i  miss some essential singularities. 

The precise connection between the Painlev6 property and integrability 
or solvability remains mysterious. For ordinary differential equations some 
results are available (Yoshida, 1983a, b). Now two conjectures can be made: 
(I) Assume that the partial differential equation is integrable. Then it has 
the Painlev6 property. (II) Assume that the partial differential equation has 
the Painlev6 property. Then it is integrable. Conjecture I is not true. 
Examples are the Harry Dym equation u, = u3uxxx  and the diffusion equation 
ut = ( u - 2 u x ) ~ .  Both equations fail the Painlev4 test. It seems that conjecture 
II is true. The problem is that, while the Painlev6 test can easily be performed, 
it requires a great deal of work to show that essential singularities do not 
occur. Even in most cases it is not possible to perform this calculation. On 
the other hand, in almost all practical cases we only need to perform the 
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u, = 2UUx-(1 + u2)uxx, which Painlev6 test. An  excep t ion  is the equa t ion  2 2 
passes  the test,  bu t  does  not  have the Painlev6 p rope r ty  (Clarkson ,  1985a). 

Let us now s tudy the wave equa t ion  

u . -  ~ u .... = f ( u )  (22) 
i = 1  

where  f is a smoo th  func t ion  o f  u. Let  n = 1 and  let  us a ssume tha t  f satisfies 
the  o rd ina ry  different ia l  equa t ion  f " + e f =  O, where  e = 1 or  c = - 1 .  Then  
equa t ion  (22) is comple t e ly  in tegrable .  Moreover ,  with these a s sumpt ions  
it can be  shown that  the  equa t ion  passes  the  Painlev6 test,  where  for  the 
case c = 1 we have to in t roduce  v = exp( iu )  and  for  the case c = - 1  we have 
to in t roduce  v = exp(u ) .  F o r  two and  more  space  d imens ions  and  with  the 
same a s sumpt ions  for  f equa t ion  (22) does  not  pass  the Painlev6 test. F o r  
f ( u )  = au + bu 3 we find tha t  for  every space  d imens ion  equa t ion  (22) does  
not  pass  the  test. 

Let  us now discuss wha t  g roup- theore t i c  reduc t ions  tell  us (Steeb et 
al., 1985; Cla rkson ,  1985b). Let  n = 3 .  Then  equa t ion  (22) admi ts  the  
symmet ry  genera tors  

O/Ot, O/Oxl, O/Ox2, O/Ox3, Xl O/Ot + t O/Oxl, x20/Ot+ t O/Ox2 

x30/Ot + t O/ Ox3, xl O/ Oxz- x2 O/ Oxl 

x2 O/ Ox3 - x3 O/ Ox2, x30/Oxl-  xl O/ Ox3 (23) 

The knowledge  o f  the  symmet ry  genera tors  enables  us to in t roduce  a 
s imi lar i ty  var iab le  s and  a s imi lar i ty  ansatz.  The  s imi lar i ty  ansatz  y ie lds  an 
o rd ina ry  different ia l  equa t ion .  Then for this equa t ion  we can test  whe the r  
or  not  the o rd ina ry  dif ferent ia l  equa t ion  passes  the Painlev~ test. 

C o n s i d e r  first n = 1. The symmet ry  gene ra to r  x O/Ot+ t O/Ox leads  to 
the symmet ry  var iable  s = t 2 - x 2 and  the s imi lar i ty  ansatz  u(x, t) = g(s). It 

fol lows that  

g"+ g' /s  = f (g ) /4 s  (24) 

where  g '  = d g /  ds. Assume  that  f satisfies f "  + cf = 0, where  c = 1 or  c = - 1 
and  f ( u )  ~ O. Then,  toge ther  with the  t r ans fo rma t ion  w = exp( ig )  (c = 1) or  
w = e x p ( g )  (c = - 1 ) ,  we find the th i rd  Painlev6 t ranscendent ,  which,  o f  
course,  passes  the  Painlev6 test. The reduc t ion  with the genera tors  O/Ot and  
O/Ox also leads  to a node  tha t  has  the Painlev~ proper ty .  

C o n s i d e r  now the case wi th  two space  d imens ions .  F r o m  the symmet ry  
genera tors  x~ O/Ot+t O/Ox~ and  x20/Ot+t O/Ox2 we obta in  the s imi lar i ty  

~2 2 2 ansa tz  u(x~, x2, t ) =  g ( s ) ,  where  s = l - x ~ - x 2 .  I t  fol lows that  

g , ,+3g,  =f (g ) /4 s  (25) 
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Assume that f satisfies f " + c f = O  ( c = l  or c = - l )  and f ( u ) ~ O .  Then, 
together with the transformation w = exp(ig) (c = 1) or w = exp(g) (c = -1 ) ,  
we find a node for which we can perform the Painlev6 test. We find that 
the Painlev6 test is not passed. On the other hand, with the ansatz 
u(x l ,  x2, t) = g(s) ,  where s = klx~ + k 2 x  2 - tot, we find that 

2 2 2 ,p 
(0,) - -  k. 1 - k 2 ) g  =f (g )  (26) 

where to2< k~+ k~. Here we find that the Painlev6 property is fulfilled. 
With this in mind we can discuss the result of  Leibrandt (1978), who 

found a B~icklund transformation between the sine-Gordon equation in two 
space dimensions and the sinh-Gordon equation in two space dimensions. 
Due to the results given above we conjecture that this Biicklund transforma- 
tion only links plane traveling waves. Notice that Hirota (1976) found a 
three-soliton solution by the nonlinear superposition of plane traveling 
waves. We also refer to the discussion of  this point by Weiss (1984). 

Let us now study wave equations that do not have the Painlev6 property. 
Consider the sine-Gordon equation in two space dimensions, 

0 2 U / O  t 2 - -  O 2 U / O X  2 - -  O 2 u / O y  2 + sin u = 0 (27) 

When we introduce polar  coordinates (r, qb) and omit the dependence on 
qb, equation (27) takes the form 

a2u/o t 2 - oZu/ar 2 - (1 / r )  Ou/ar + sin u = 0 (28) 

Performing the transformation v = exp(iu),  we arrive at 

v ( o 2 v l a t  2 - o 2 v l o r  2) - ( o v / o  t) ~ + ( o v l o r )  ~ 

- ( 1 / r ) v  Ov/Or+�89 3 -  v) = 0 (29) 

The Painlev6 test yields 

Vo =-4(dp2--~b2), v, = 4[~,,  - qbrr- (1/r)qbr] (30) 

At the resonance r = 2 we obtain 

0 = (16 / r )~ r  (O,,O r 2 + qb r O 2  - -  2~r,O,qb,) (31) 

I f  �9 depends only on r, then the right-hand side of  equation (31) 
vanishes. The right-hand side of  equation (31) also vanishes if 

(~) 2rf~) tt 2i- lff~ 2~)rr - -  2 ~  t ~ r d P r r  = 0 (32) 

Equation (32) admits the symmetry generators 

a/at, O/Or, r O/Ot + t O/Or, r O/Or + t O/Ot + r 0 /0~  (33) 

The group-theoretic reduction with the help of  the ansatz qb(r, t ) = f ( s )  
(s = r 2 -  t 2) yields 

s f  '3 = 0 (34) 
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Any plane wave ~(r ,  t ) = f ( k r - ~ o t )  is a solution to equation (32). No 
dispersion relation arises, i.e., k and ~o can be chosen arbitrarily. In addition, 
equation (32) is invariant under the M6bius group 

d~ = (a$  + b )/(ctp + d) (35) 

where ad - bc = 1. Equation (35) can be viewed as a particular auto-B~ick- 
lund transformation. The inverse transformation is given by 

~0 = (dO - b ) /  ( - c O  + a) (36) 

Notice that equation (32) is even invariant under qb = F(~O), where F is a 
twice-differentiable function. Equation (32) has also been discussed by 
Weiss (1984) in connection with the double sine-Gordon equation. Equation 
(32) is closely related to the Born-Infeld equation in one space dimension 

(1 + ue~)u, + ( -1  + u2)Uxx - 2u,UxUx, = 0 (37) 

Any plane wave u(x,  t ) = f ( k x - o o t )  is a solution to equation (37) where 
w 2 = k 2 (dispersion relation). Equation (37) can be viewed as a sum of the 
linear wave equation u , - u x x = 0  and equation (32) (~b~u) .  Thus, the 
dispersion relation is generated by the linear wave equation. The Born- 
Infeld equation (37) can be derived from the Lagrangian 

L = - (1  + u ~ -  u2) '/2 (38) 

Barbashov and Chernikov (1966) solved the initial value problem. However, 
the solution can only be given in parametric form. Equation (37) is of  the 
hyperbolic type if 1 + u 2 - u 2 > 0. When we put y = it we find 

(1+ u~)u~,x + (1 + 2 ux)uyy - 2uxuyUxy = 0 (39) 

This equation is always of  the elliptic type. 
Let us apply the Painlev~ test to equation (37). Inserting the ansatz 

u ~ ~"Uo (40) 

we find two branches, namely (i) n = 1 and (ii) n arbitrary. In both cases 
Uo can be chosen arbitrarily. Thus we say that equation (37) passes the 
Painlev6 test. 

Consider now the Liouville equation in two space dimensions 

u, - uxx - uyy = exp(u) (41) 

Putting v = exp(u),  we obtain 

l , ) ( 1 ) t t - - 1 ) x x - -  ~ )yy ) - -1 . )2"~I )2"1  - I)y--2 V3=0 (42) 
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Performing the Painlev6 test, we find that 

j = O :  Vo 2(~  2 -  ~ = ~ x - d g y )  (43) 

j = 1: Vl = -2(qb,,-~bxx --(~yy) (44) 

At the resonance r = 2 we obtain 

- -  2 2 2 2 2 2 
o - ~ , ( ~ x x % y  - , ~ )  + 4, x(4,, , ,~yy - q,~,)  + �9 ~ ( ~ , , ~ x ~  - ,I, x,) 

+ 2cbx~y (cb~,d~y, - dp~y~.) + 2 ~ 4 9 ,  (lff~ty(~xy -- ~x t~yy)  

+ 2d~,qbr(dO~,~xy - ~yt~iJxx ) (45) 

Any plane wave r y, t) = f ( k l X  + k 2 x -  oJt) is a solution to equation (45). 
No dispersion relation arises. Equation (45) admits the symmetry generators 

o/at, O/ox, O/ay, x O/oy - y  o /ax  

x o / a t +  t o/ox, y o / o t +  t o /ay  (46) 

The group-theoretic reduction ~(x,  y, t) = f ( t  2 - x 2 - y2) yields 

s f  '4 = 0 (47) 

Equation (45) is invariant under the M6bius group (35). 
Consider now the wave equation 

u,, - u= = au + bU s (48) 

and group-theoretic reductions. Let u(x,  t ) =  g(s )  and s = t 2 -  x 2. Then we 
obtain 

g"+  g ' =  a g / 4 s  + bgS/ 4s (49) 

We find that this equation does not have the Painlev6 property. Let us now 
study wave equations of  the form 

u , , -  ux~ = e ( u ) / O ( u )  (50) 

where P and Q are polynomials in u. We assume that Q ( u ) # O  for all 
u, P # Q, and the degree of the polynomials P and Q is higher than one. 
An example is given by 

u.  - u~x = au + bu3/ (1 + u 2) (51) 

where a, b e R. This equation can be derived from the Lagrangian 

2 u ] _ l n ( l + u  2) (52) L(u, u,, u~) = u , -  

We ask: Is there any P and Q such that equation (50) has the Painlev6 
property? The group-theoretic reduction u(x,  t ) =  g ( s ) ( s  = t 2 -  x 2) yields 

O ( g ) g " +  O(g)g '  = P ( g ) / 4 s  (53) 
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With the assumptions made for Q and P we find that equation (53) does 
not have the Painlev6 property. Here we have used the list given by Davis 
(1962). Consequently, equation (50) does not have the Painlev6 property. 

Finally, let us study the wave equation (48) and the Painlev6 test due 
to Weiss et al. (1983). For the sake of simplicity we put a = 1 and b = -1 .  
Inserting the ansatz u -a )nUo  into equation (48), we obtain n = - I  and 
uo#0.  The dominant terms are u,,, Uxx, and u 3. The resonances are given 
by r~ = -1  and r2 = 4. Inserting the expansion 

u = ~-1 ~ ujqbJ (54) 
j=o 

into equation (20), we find that 

U o = 2 ( ~ x - ~  2) (55) j = O :  2 2 

j = 1: 3u2ul = (r162 ) (56) 

j = 2: 3U2oU2 = Uoxx - Uo,, - 3UoU 2 + Uo (57) 

j = 3 :  2 u 2 u 3 = ( q b  -~,,)u2-6UoUlU2 

- 2 ( ~ , u 2 t -  ( ~  x U 2 x )  - U 3 -{- ld I + U l x  x - -  U 1 It (58) 

At the resonance j = 4 we obtain 

0 = 2(qb,, - qOxx)u3 + 6UoUl U3 "{- 4(qrP,tt3, -- dgxU3x ) q- U2,, -- U2xx 

- u2 + 3UoU 2+ 3u2u2 (59) 

Inserting equations (55)-(58) into equation (59), we find that the right-hand 
side does not vanish identically. Consequently, equation (20) does not have 
the Painlev6 property. This coincides with the fact that the group-theoretic 
reduction with the help of the ansatz u(x ,  t) = g ( s )  (s = t 2 - x  2) leads to an 
ordinary differential equation that does not have the Painlev6 property. 
This related to the fact that ~(x,  t) = f l - x  2 does not satisfy equation (59). 
When we insert Cb(x, t ) = f ( k x - t )  into equation (59), we find that the 
right-hand side is identically zero. 
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